Hydroxyl ion addition to one-electron oxidized thymine: unimolecular interconversion of C5 to C6 OH-adducts.

نویسندگان

  • Amitava Adhikary
  • Anil Kumar
  • Alicia N Heizer
  • Brian J Palmer
  • Venkata Pottiboyina
  • Yong Liang
  • Stanislaw F Wnuk
  • Michael D Sevilla
چکیده

In this work, addition of OH(-) to one-electron oxidized thymidine (dThd) and thymine nucleotides in basic aqueous glasses is investigated. At pHs ca. 9-10 where the thymine base is largely deprotonated at N3, one-electron oxidation of the thymine base by Cl(2)(•-) at ca. 155 K results in formation of a neutral thyminyl radical, T(-H)·. Assignment to T(-H)· is confirmed by employing (15)N substituted 5'-TMP. At pH ≥ ca. 11.5, formation of the 5-hydroxythymin-6-yl radical, T(5OH)·, is identified as a metastable intermediate produced by OH(-) addition to T(-H)· at C5 at ca. 155 K. Upon further annealing to ca. 170 K, T(5OH)· readily converts to the 6-hydroxythymin-5-yl radical, T(6OH)·. One-electron oxidation of N3-methyl-thymidine (N3-Me-dThd) by Cl(2)(•-) at ca. 155 K produces the cation radical (N3-Me-dThd(•+)) for which we find a pH dependent competition between deprotonation from the methyl group at C5 and addition of OH(-) to C5. At pH 7, the 5-methyl deprotonated species is found; however, at pH ca. 9, N3-Me-dThd(•+) produces T(5OH)· that on annealing up to 180 K forms T(6OH)·. Through use of deuterium substitution at C5' and on the thymine base, that is, specifically employing [5',5"-D,D]-5'-dThd, [5',5"-D,D]-5'-TMP, [CD(3)]-dThd and [CD(3),6D]-dThd, we find unequivocal evidence for T(5OH)· formation and its conversion to T(6OH)·. The addition of OH(-) to the C5 position in T(-H)· and N3-Me-dThd(•+) is governed by spin and charge localization. DFT calculations predict that the conversion of the "reducing" T(5OH)· to the "oxidizing" T(6OH)· occurs by a unimolecular OH group transfer from C5 to C6 in the thymine base. The T(5OH)· to T(6OH)· conversion is found to occur more readily for deprotonated dThd and its nucleotides than for N3-Me-dThd. In agreement, calculations predict that the deprotonated thymine base has a lower energy barrier (ca. 6 kcal/mol) for OH transfer than its corresponding N3-protonated thymine base (14 kcal/mol).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel implementation of the equation-of-motion coupled-cluster singles and doubles method and application for radical adducts of cytosine.

The equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) method has been implemented into the massively parallel ACES III program using two alternative strategies: (1) storing the entire EOM Hamiltonian matrix prior to diagonalization and (2) recomputing the four-virtual part of the matrix from integrals in a direct mode. The second is found to be far more efficient. EOM-CC shows v...

متن کامل

MO calculations of some thymine radicals at the INDO level.

The results of MO INDO calculations of some thymine radicals are presented. These include as well as the hydrogen addition radicals the hydroxyl addition radicals to C5 and to C6 of the C5=C6 double bond of the thymine molecule. The radicals resulting from hydrogen abstraction from the methyl group and from the nitrogen N1 are also studied. Except for radicals where the main spin density is loc...

متن کامل

Free-radical reactions induced by OH-radical attack on cytosine-related compounds: a study by a method combining ESR, spin trapping and HPLC.

Free-radical reactions induced by OH-radical attack on cytosine-related compounds were investigated by a method combining ESR, spin trapping with 2-methyl-2-nitrosopropane and high-performance liquid chromatography (HPLC). Cytidine, 2'-deoxycytidine, cytidine 3'-monophosphate, cytidine 5'-monophosphate, 2'-deoxycytidine 5'-monophosphate and their derivatives, of which 5,6-protons at the base mo...

متن کامل

Selective one-electron oxidation of duplex DNA oligomers: reaction at thymines.

The one-electron oxidation of duplex DNA generates a nucleobase radical cation (electron "hole") that migrates long distances by a hopping mechanism. The radical cation reacts irreversibly with H2O or O2 to form oxidation products (damaged bases). In normal DNA (containing the four common DNA bases), reaction occurs most frequently at guanine. However, in DNA duplexes that do not contain guanin...

متن کامل

Fast repairing of oxidized OH radical adducts of dAMP and dGMP by phenylpropanoid glycosides from Scrophularia ningpoensis Hemsl.

AIM To investigate the antioxidative activity of the constituents of the roots of Scrophularia ningpoensis (Chinese name: Xuanshen). METHODS The main compounds from the roots of Scrophularia ningpoensis were isolated and identified by chromatography and FABMS, NMR etc. Using the techniques of pulse radiolysis, the electron transfers from iridoid glycosides (IG) or phenylpropanoid glycosides (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 135 8  شماره 

صفحات  -

تاریخ انتشار 2013